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We have developed a methodology that can be used in reconstruction algorithms to quantify the optical
coeflicients and the geometrical eross section of a weakly abnormal optical target embedded in an

olherwise homogencous medium.

This novel procedure uses different time-dependent point-spread

functions to analyze the diffusive and absorptive contrasts obtained from time-of-flight measurements.
Data obtained from time-resolved transillumination of a tissuelike phantom are used to test the accuracy
of this new deconvolution methodology.
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1. Introduction

Optical imaging has attracted significant interest as
a potential noninvasive diagnostic tool for detecting
tumors and other abnormalities hidden in thick bio-
logical tissues."* For this purpose various tech-
niques such as frequency-resolved, time-resolved,
and ew techniques that use different geometries (e.g.,
transillumination) have been proposed. Until now,
most image-reconstruction schemes have been de-
vised for the frequency-domain technique in which
one uses the measured phase and intensity to quan-
tify the position, the optical properties, and the geo-
metric cross section of the abnormal target(s).
When these reconstruction techniques are applied to
real experiments, in which realistic values of differ-
ences between the optical characteristics of the ab-
normal target and normal background (e.g., those
reported in 5) are used, the location of the centroid of
the abnormal target is easily found. However,
quantification of the optical properties of the target
with reasonable resolution (i.e., reconstruction of the
cross section) still remains a challenging task.6 %

In the present paper we focus on time-resolved
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transillumination. Because conventional transillu-
mination results in poor resolution of abnormal re-
gions, improvement of spatial resolution is required
and can be obtained, in principle, by the time-gated
detection of photons.? Unfortunately, the low level
of detected intensity of those photons that reach the
detector at early times (e.g., quasi-ballistic photons)
makes high spatial resolution of the target clinically
difficult.’?*  Thus, for example, for a 55-mm-thick
breast-tissuelike phantom it has been found that an
adequate level of light is detected only after a time of
500 ps in excess of the true ballistic transit of 220
ps.'? However, even though for these longer delay
times an image is degraded by the long trajectories of
the detected photons, the presence of an abnormal
sife (which has optical properties that differ from
those of the background normal tissue) still perturbs
photon paths inside the tissue. Here we propose a
new methodology based on time-dependent contrast
functions to diseriminate between the absorptive and
the diffusive perturbations caused by an abnormal
target. Moreover, to substantiate our methodology,
instead of using simulated data or unrealistic char-
acteristics of the abnormal target we used time-of-
flight experiments performed on a challenging
phantom whose thickness and optical properties, and
the characteristics (size and optical properties) of the
abnormal target, mimic a human breast. To our
knowledge, this use of time-dependent contrast fune-
tions is novel.

The simplest descriptions of photon trajectories in-
side a turbid medium that contains an embedded
abnormality utilize diffusionlike models such as the
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diffusion approximation of transport theory'*'* or a
lattice random-walk model.’> Even in those models.
expressions for perturbation kernels may still be
quite complicated, making the fitting or the iteration
of experimental data quite difficult unless adequate
approximations can be found. We previously de-
rived the time-dependent contrast functions associ-
ated with an abnormally absorbing region.'’® Using
the same methodology, here we determine the con-
trast functions for a weak scattering abnormality em-
bedded in an otherwise optically homogeneous
medium. By combining these contrast functions we
now devise a methodology, used in an inverse algo-
rithm, that enables us to reconstruct the optical prop-
erties and the cross section of a region in which the
scattering and the absorption are both abnormal
This algorithm makes use of a recently found Gauss-
lan approximation to the point-spread function.!!.¢

In Section 2 we describe the theoretical model and
compare the diffusive and the absorptive contrasts
with those obtained from more-rigorous derivations
based on the diffusion approximation to the transport
equation.'® In Section 3 we apply our model to a set
of measurements that were performed on a tissuelike
phantom at University College London. In Section 4
we comment on the significance of our research and
also on the limitations and the pertinence of the ap-
proximations made in our analysis.

2. Theoretical Model

The theoretical development presented here is based
on the theory of lattice random walks in which the
tissue continuum is replaced by a simple cubic lattice
and photons are represented by random walkers per-
mitted to move only between lattice points.'? In this
picture scattering events are replaced by steps taken
by a random walker moving from one lattice site to
another. The tissue structure is considered to be
homogeneous, except for a compact region containing
an abnormal site at which the scattering and the
absorption coefficients are both different from those
of the background. The tissue is modeled as an in-
finite slab, N lattice units thick, separated from the
exterior by two planes atz = 0 and z = N. Points in
the interior of the tissue are represented by z > 0,
whereas values of x and y can assume all integer
values from —= to », which are then converted into
dimensioned units.

In our model a single photon is introduced into the
medium at time step zero, at point r, = (0,0, 1). The
photon exits the medium at step n and is detected at
pointr = (x,v,N). Anabnormal mass is assumed to
be located at s = (s, s, s4). This abnormal site is
assumed to have two properties that differ from those
of the other lattice sites. First, when a photon
reaches s it can be absorbed with some excess prob-
ability n < 1 compared with its activity with other
sites where the probability is p (with w <= 1). Sec-
ond, the photon experiences some additional steps or
time delay, Anj,, while it is moving across the slab
(i.e., in the transmission mode), which is related to an
increase in scatlering coefficient at the site. In a
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description below of the transformation of random-
walk parameters into physical variables we relate v,
i, and the average value (Anj,) to the actual optical
coefficients [see Egs. (4) below].

The events that lead to the arrival of a photon at
the surface can be decomposed into three groups,
with associated times n,, An,,, and n.:

1. First, the photon moves from the source to site
s. It then may recirculate, leaving site s and return-
ing an arbitrary number of times. This first group of
events takes n, steps.

2. The photon is delayed for An,, steps because of
the increased scattering cross section of s.

3. The photon finally leaves s and moves in n,
steps to a point one lattice unit below the surface from
which, one step later, it exits the material. Exit
time n thus satisfies the relation n, + Any, + ny, =n -
i

Let p,(rjry) and q,(s, rlr,) be, respectively, the
probabilities that a photon injected at v, at n = 0 is
at r = (x, ¥, N) at step n, without and with the
presence of an abnormal site at s in the slab. One
can define the contrast, C(s, rlr,, n), to be

~ palrlry) — g8, riry) q.ls, rlry)

C(s, rjry, n)
poiriry)
(1)

pPalriry)

from which we define the quantity I(s, r/r,, n) =
p.rirg) — q,(s, xlry) to be the perturbation ampli-
tude,

Previously it was shown that, for small values of 1
(L.e.,m <= 1) the absorptive contrast can be expressed
as'?

) Wis, £, 1),
Cilr|rg, n) =4 . (2)
palriry)

where Wis, r, ry), is the probability that the photon,
after entering the material at ry, visits s and is de-
tected at r at the nth step. Using the same meth-
odology as is presented in Ref. 15, we have derived an
expression for the contrast that arises from a slight
increase in the scattering properties of s above those
of the background. The effect of such scattering ab-
erration is modeled by an increase in the number of
steps in the random walk of the photon, leading, as
shown in Appendix A, to the following expression for
the diffusive contrast:

Wis, r, r,),

. Wis, r, ry),.
Chpls, rirg, n) =
palrirg)

‘:_\H’,-,).
(3)

Although derivations of the absorptive and the dif-
fusive contrasts given by Egs. (2) and (3) were done
separately. the assumptions of both derivations are
the same. 1In both instances we suppose that per-
turbations in photon paths induced by the inclusion
are small (ie, that y <= 1 and (An,) < n), which



allows us to use the product of two Green’s functions.
Pels|ry) and p(r|s) (see Appendix A).

The numerator of Eq. (3) is the discrete equivalent
of the derivative of the point-spread function at s.
Hence the largest contribution of scattering pertur-
bations to the overall contrast is expected for small
values of n, where the slope of W, as a function of n
is steepest. The influence of scattering perturba-
tions that is due to the inclusion becomes less and less
significant when n is large. Later in this section we
explicitly describe the function W, and its Gaussian
counterpart [Egs. (7) and (8)].

Now let us relate the dimensionless variables of the
lattice random walk to actual physical variables’s:

u . T
= —, n — pyct, L= —
s \'2
i a, '-j'n T Ha
N BB (4)
\'12 Ij"s

where 1, and p,’ are the absorption- and the
transport-corrected scattering coefficients of the
background in inverse millimeters, ¢ is the speed of
light in the medium in millimeters per picosecond, £ is
the time in picoseconds, T"and r are the thickness of
the slab and the distance variable, respectively, in
millimeters, and T" = T + V2/p,”. The absorption
coefficient of the abnormal inclusion is {,,.

In diffusionlike processes, which are probablistic in
nature, the pertinent variables are the mean-square
displacement and the number of steps or time. Thus
one can relate the quantity (Any) to the scattering
coefficient (i." and the size d of the inclusion by using
the relation between the mean-square displacement
{I?) and the number of steps m of an isotropic random
walk. For exponentially distributed scattering
lengths the latter is given as (/%) =~ 2m,'® which, in
terms of actual variables, takes the form i,"* (d,*) =
2¢1,ji,/, where 7, = m/(cji,’) is the time spent b
photons to achieve a mean-square displacement (d,~)
inside the inclusion. Similarly, when the photon mi-
grates within the normal scattering medium, say, for
a time 7,, the corresponding mean-square displace-
ment is p,'? (d,®) = 2e7,p,’. Thus, for an equal
mean-square displacement (d,%) = (d,%) = (d*), the
extra time At = 1, — 7, taken by the photon to mi-
grate a given distance (d”) owing to increased scat-
tering is

— <dri)_( *.1"’ — M )

AT=7;—Te (5)
= i 2¢ '
which, in terms of random-walk variables, is
{dZ) sr —sr = ’;:l
Mgy =i fir= T U i) (6)

2

Because photons will spend more time at an abnor-
mal site when an inclusion has increased scattering,
n in Eq. (1) has to be replaced by m.y = Km, where K
is defined as K = {i,'/p.’. In the treatment that

follows, we consider that the inclusion might extend
over several contiguous lattice sites, in which case the
resulting absorptive and diffusive contrasts are con-
sidered the sum of the individual contributions of
each abnormal site. This approximation is valid for
small perturbations and target size (compared with
the dimensions of the slab).

The exact expression for W(s, r, ry),,, in the special
caser = (x, 0, N), ¥, = (0, 0, 1), is}2.1526

9
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where
An = p 'cAt,
1 1 (a+ b)*
R = e

a.(k) = (Fels,® + (s3 + 2kN = 1)*}V%,
B.(m,x) = {#[(x —8,)* + (N — 53 + 2mN = 1)*}}'%
(8)

[We have assumed that s, = 0, i.e., s = (s,. 0, s4),
which corresponds to line-scan measurements.]
Previously we showed that this complicated expres-
sion can be approximated with a simple Gaussian
distribution that can be characterized in terms of its
standard deviation ¢. For transillumination, o is
given, in real variables, as!!16

AR Sy | S5 i
a = 0.816 _) (1 = T'J | (8)
’Ll !,

where Af is the excess transit time of the imaging
system and S is the depth of the inclusion in physical
units. Note that the maximum value of ¢ is ob-
taingd at the midplane (5; = T"/2). Equation (8) is
used in the data fitting described in Section 3.
Before further analysis, let us compare our simple
expressions for the absorptive perturbation and dif-
fusive perturbation amplitudes [numerators of Egs.
(2) and (3)] with those obtained by Arridge.'* who
used a standard perturbation theory of the diffusion
approximation to the transport equation. Parame-
ters chosen here, for illustration, are close to those of
the phantom analyzed in Section 3: p,' = 0.7mm .
T = 55 mm, and n, = 1.56 [where n, is the refractive
index that one needs to calculate ¢; see Egs. (4)-(6)].
The source, the target (at midslab), and the detector
are taken to be collinear. In Fig. 1, perturbation
amplitudes of our model (dotted curves) are compared
with those of Arridge (solid curves). The absorptive
perturbation amplitudes [Fig. (1a)] and early-time
behavior of the diffusive perturbation amplitudes
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Fig. 1. Comparison between (a) absorptive and (b) scattering per-
turbations [Eq. (1) fT.] of the diffusion model of Arridge® (solid curves)

and the random-walk model (dotted eurves) as a function of the
gating time At for a detector collinear with the source and point s.

[Fig. (1b); up to their maxima] for the two models are
in excellent agreement. However, the asymptotic
behavior of the diffusive perturbation calculated from
the Arridge model tends to zero more slowly (data not
shown) than in our case (see approximations dis-
cussed in Appendix A and Section 4).

The basic assumption of our approach is to sepa-
rate the contribution of diffusive and absorptive per-
turbations; that is, our analysis makes use of the
different dependences of the contrasts on time delay
At of the transillumination imaging system, as illus-
trated in Fig. 2. The sum of the two contrasts is alzo
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Fig. 2. Behavior of absorbing (dotted curve) and scattering

(dotted—dashed curve) contrasts and their sum (solid curve) as a
function of the gating time A, At short Af the scattering pertur-
bation is dominant, whereas at large At the total contrast is ex-
clusively dependent on the absorptive perturbation.

shown. (These theoretical caleulations are done for
a slab 55 mm thick that has optical coefficients of
= 0.0056 mm ' and p.' = 0.77 mm ! and contains
an embedded cubic target of size d = 5 mm on a side
whose scattering and absorption coefficients are
twice those of the surrounding medium; although
these parameters are close to those of the experimen-
tal phantom on which our data analysis is performed,
any reasonable set of parameters could have been
used.) [t can easily be seen from this figure that for
relatively large At (At > 1500 ps) the main contribu-
tion to the total contrast, which is nearly independent
of At, is due to the absorptive component. In com-
parison, for small time delays (A¢ < 700 ps), contrast
amplitude rises steeply with decreasing Af because of
an increasing contribution of the diffusive, scattering
contrast component. As has been shown in Ref. 15
(and can be seen from Fig. 2), the absorptive compo-
nent also increases with decreasing At but at consid-
erably smaller values of Az, and its relative change is
smaller than that of the diffusive component.
Hence, as we show in Section 3, one can use the short
At range to estimate the magnitude of the diffusive
perturbation if ., and the corresponding absorptive
contrast component are first determined from exper-
imental data thatl pertain to large At.

3. Data Analysis

To illustrate our approach we used streak-camera
data provided by investigators working at University
College London. These researchers studied a phan-
tom made from a single perturbing cylinder, of diam-
eter 5 mm and length 5 mm, located midway between
the two faces of a rectangular slab of thickness 7" = 55



mm. Measurements were made in the so-called fan
geometry, in which the beam from a poinl laser
source is aligned exactly with the center of the target
and the detector is moved (in 1-mm steps; total 51
steps) along a single line (x axis) on the opposite side
of the slab. Temporal path-length distributions I{x,
At) were experimentally obtained for each position of
the detector. However, because of low intensity, no
photon data were provided for At < 500 ps.

Our goal was to determine the optical properties
of the background and those of the inclusion, along
with its size, from existing data. To perform our
reconstruction we made use of the knowledge that
the inclusion is located at the middle of the slab.
(Off-axis scans of the source, and analysis of the
resulting two-dimensional images, are required for
the depth of the target to be determined.) We first
fitted all the experimental {I(x, At)} to theoretical
path-length distributions for a homogeneous slab.®
To do so we took account of an evident geometrical
modification for the lateral shift of the source and
the detector, which, in the case of the fan geometry
and in the framework of the random-walk model. is
an additional exponential factor to those in the
transillumination case (source and detector col-
linear), viz.,'?

I'"'(x, At) = I'(At)exp(—3p,'x°/4cAt). (9)

The fitting parameters are the scattering and ab-
sorption coefficients (p.', p,), the amplitude con-
stant of I{x, A¢), and an adjustable time shift &¢
relative to the nominal time that the photons enter
the material. For each detector position we deter-
mined the maximal value of the fitted intensities.
This quantity changes as the detector is moved with
respect to the source. The path-length distribu-
tion corresponding to the highest value, I,(A¢), was
assumed to be the unperturbed path-length distri-
bution, and we used it to determine values of the
scattering and absorption coefficients inside the
slab. The experimental curve and the theoretical
fit are presented in Fig. 3. From the fit we ob-
tained the values . = 0.77 mm ' and p, =~ 0.0056
mm !, which agree well (within ~10%) with the
optical parameters of the phantom, for which the
predetermined values were refractive index n, =
1.56, u, = 0.7 mm ', and p, ~ 0.006 mm .
Then, for a chosen set of time delays At = 750, 800,
900, 1000, 1200, 1500, 2000, 2500, 3000 ps, intensity
contrasts C(x, Af) were calculated for different values
of scan position x (i.e., detector positions). In the
case of scanning with a coaxial source and detector
(so-called transillumination geometry), one can use
the simple formula C(x, Af) = [[ (A8 — I(x, AD)]/
[,(Af) to estimate contrast. However, in the case of
fan geometry one requires corrections similar to those
that lead to Eq. (9) to obtain corresponding transil-
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Fig. 3. Time-of-flight curve of maximum intensity obtained in the
line-scan measurement (solid curve: see text). The dotted curve is
the theoretical fit, from which the optical properties of the back-
ground are calculated.

lumination contrasts, Cylx, Af), from the raw exper-
imental data (see Appendix B); viz.,

I'"(x. At) Padxo)

Clx Al =|1——
: 1y (x0, AL) pafx)

Ws, x)y, pyulx)

. W s, x)y, pyl0) ] i
where indices ¢ and [ in W(s, x), correspond, respec-
tively, to the transillumination and the fan geome-
tries and x, is the position of the detector for the
unperturbed path-length distribution [see Eq. (9) (T.].

Experimental contrast functions were then fitted to
the theoretical contrasts given by Egs. (2) and (3).
For the sake of simplicity the inclusion was repre-
sented by N,? independent. identical target lattice
points forming a cube of N, X N, X N, elements. N,
is an input parameter. The fitting parameters are
the effective absorptivity of an elementary absorber
Mo a scale factor for the contrast A, determined by
a least-squares fit to the data, the position of the
center of the inclusion x,, and the inferred effective
distance d, between neighboring lattice sites in the
target. Theoretically, parameter d, should have a
value close to that of the lattice spacing of the back-
ground, i.e., d, = V2/u.'. Although d_ varies with
the choice of the number of presumed target lattice
points N, one criterion for deciding the proper value
of N, is to see how close the computed value of d_ is to
the inferred lattice spacing of the background (1.83
mm for the phantom). The productd = (N, — 1)d.,
which varies only weakly with N, corresponds to the
actual geometric cross section of the target.

To determine the optimal choice of N, we first fitted
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ps for N, = 4. The dotted curves are the theoretical fits to the data from Eq. (1).

Values of fitting parameters are presented in Section

3. Systematic data fitting to contrast functions for a set of Af enables one to obtain both the optical coefficients and an estimate for the

size of the inclusion (see text).

the measured contrast functions C{x, A¢) for At =
800 ps for N, = 3,4,5,6,7. The corresponding val-
ues of d_ are 2.5, 1.8, 1.5, 1.2, and 1 mm. Thus the
computed values ford are 5,5.4, 6, 6, and 6 mm. As
the closest value of d_ to the actual lattice spacing is
that obtained for N, = 4, it was chosen for subse-
quent calculations of the optical properties. We
found that the results mentioned above were invari-
ant with the choice of At as long as Af was less than
the value corresponding to the maximal values of the
time-resolved intensities.

Using the methodology described above, we then
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fitted the contrast functions for different time delays.
Some examples of fitted contrasts for At =
800, 900, 1500, 2500 ps are given in Fig. 4. As ex-
pected, the observed contrast amplitude decreases
considerably in the range At = 800-1500 ps, and it is
almost constant for longer time delays (Section 2).
For At = 800 ps the fit yields A, = 0.026, x; = 24.4
mm, and d, = 1.8 mm. We know that for short time
delays the amplitude reflects the contributions of
both the absorptive and the diffusive perturbations.
Thus we used the amplitude of the fitted contrast for
At = 2500 ps (for which the contribution of the dif-



fusive perturbation is negligible) to determine the
value m.r = 0.015. Once this value was known, we
computed C,(x, 800) from Eq. (2) and subtracted the
results from the fitted value of C(x, 800) to obtain
Cplx, 800). The next step involved fitting the latter
value by Egs. (3), (5), and (6) to obtain the values
(Anpy = 9 and A7 = 61 ps. The absorption and the
scattering coefficients of the inclusion were calcu-
lated from knowledge of the values of 7., and At
From this analysis we found that i.” = 1.6 mm and
i, = 0.011 mm ', which compare favorably with the
known values 1.4 and 0.012 mm ..

Hence by this method we are able to quantify the
optical properties of the target rather well. Further,
although there seems Lo be a difference of approxi-
mately 50% between the actual and the computed
geometrical cross sections of the target, this discrep-
ancy may be due to several factors that can be min-
imized, including noise in the data, possible
distortion of the target during preparation of the
sample, and limited measurements (there being no
oblique-angle and off-center source-detector mea-
surements in the supplied data set). Indeed, this
figure of 50% may originate in large part from the fact
that the present data-acquisition scheme and algo-
rithm implementation cannot distinguish between
square and circular cross section; this difference, by
itself, is approximately 30%. Significantly, the cal-
culated target dimension d seems to converge as N
increases (d = 6.0 for N, = 5, 6, 7), indicating that
little improvement would accrue if one were to sub-
divide the target onto an increasingly finer mesh
when fitting data by algorithms similar to that which
is used here.

4. Summary and Discussion

We have devised a new methodology that uses avail-
able time-of-flight measurements to deduce the cross
section and the optical properties of an abnormality
embedded in a homogeneous, optically turbid me-
dium. The novelty of this approach is that it is
based on theoretical expressions of absorbing and
diffusive contrast functions that have different time-
dependent behaviors, allowing one to diseriminate
between absorbing and scattering contributions to
the total detected contrast. Although this method
cannot be used for cw measurement because of the
approximations used in the analysis (see Appendix
A), it compares well with reconstruction methods
based on the Born approximation applied to the time-
dependent diffusion approximation to the transport
equation. A particular strength of our analysis is
that it represents the photon point-spread function
(which appears in the expressions for the contrasts)
by a Gaussian approximation, making the implemen-
tation of an inverse method much easier than when
complete expressions for the perturbation amplitudes
are used.

We applied our method to time-of-flight measure-
ments of a tissuelike phantom and found reasonable
values for the overall size and optical properties of an
abnormality. In contrast to reconstruction schemes

that employ simulated data for their validation, ours
uses real experimental data containing real noise,
obtained from a phantom that had finite boundaries.
In its present version the algorithm cannot recon-
struct the detailed shape of the target, so one obtains
an equivalent cubic volume. For the particular
phantom explored here, which was chosen because of
its similarity to tissue, the discrepancy between esti-
mated and nominal target dimension is approxi-
mately 8%, although corresponding variations of the
cross section and volume of the inclusion are larger
(respectively 50% and 60%). One has to note that
only line-scan measurements were available. More-
over, unlike in simulation experiments, the range of
At over which the measurements were performed cor-
responds to the diffusive regime of light propagation
within the tissue. in which no ballistic or short-path
photons are detected.

So far our method has been applied to only one set
of measurements, all obtained from the same phan-
tom. This phantom contains an embedded target
whose radiusis 1/11 of a 55-mm slab thickness. The
optical properties of the slab and those of the abnor-
mal target are in the range reported in the literature
for real tissue. No other method has provided rea-
sonably accurate, quantitative characterizations of
such a realistic phantom. For purposes of simple
ilustration we used a phantom whose inclusion was
known to be in the center of the slab, but straight-
forward generalization (albeit with much more-
extensive measurement and calculation, involving
oblique-angle source—detector geometry) would allow
one to determine the depth of the inclusion as well,
However, note that we have quantified the charac-
teristics of a target in the middle of a slab, where the
resolution is worst.

We expect to test further the robustness of our
method by using a variety of phantoms with different
optical properties and thicknesses, and we are refin-
ing our inverse algorithm to take into account the
edge effects of a finite slab on photon path lengths.
Although the algorithm currently presupposes a sin-
gle abnormal mass located within a homogeneous
background, it can readily be generalized to detect
and characterize multiple targets. However, issues
of detectability, when the target lies within an opti-
cally heterogeneous background that is characteristic
of real tissue, yet need to be investigated. Finally,
we note that no computational scheme will accurately
locate and characterize a hidden target if the intrinsic
contrast between target and background is low. No
scheme will resolve multiple targets that are close
together, particularly when their optical properties
are close to those of the background,

Appendix A: Derivation of Diffusive Perturbation

As previously.’® the perturbation induced by the
presence of the abnormal target embedded in other-
wise homogeneous turbid background can be ex-
pressed in terms of the generating functions of the
sequences involved in the migration of photons inside
the medium.
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The generating function for a sequence {4, }, which
can be regarded as a discrete analog of a Laplace
‘transform, is defined as

]’iﬁ = 2 h’n exp(_gn)7 (Al)

n=0

in which £ is the transform variable. For example,
let 4, be the probability distribution in the time
domain that a photon is delayed for An,, steps while
it is at the abnormal site, in which case i, is its
transform. Similarly, p(r|s) is the generating func-
tion of the probability distribution p,(r]s), which is
the probability that a photon starting at s will be
found at point r exactly n steps later.

By following the derivation given in Ref. 15 one
finds that a general expression for the perturbation
amplitude [see Eq. (1) ff.] can be expressed as

0, = (L~ bpdslropyris)
. ‘i’é +(1 - qﬂ’t)ﬁg(sls)

(A2)
One has to choose the appropriate model for a given
perturbation. In the case of diffusive perturbation,
we model the excess delay time at the abnormal site by
the geometric distribution s, = (1 — 0™ ' g <1,
An, =1,2,3, ..., where 0 is a number between 0 and
1. The average duration of this distribution in dis-
crete time units is (Any) = (1 — 6)° T and its generat-
ing function is Uy = (1 — 0)/(e®* — 0). For small £ one
can expand ¢* = 1 + £ and assume that p(s|s) = 1
[Pelsls) is the recirculation probability through s].
Hence, the perturbation amplitude becomes

Q: = (Anp)Ep(siry) pe(ris). (A3)

The inverse transform of [£5.(s|r,), p.(r|s)] is simply
the derivative of W, with respect to n, viz., W(s, r, r,),
- W(s, r, ry), ;. so, by Eq. (1), one finds the expres-
sion given in Eq. (3).

Appendix B: Relations between Fan Data and
Expressions for Transillumination Geometry

Some geometrical corrections are required if we are to
obtain from fan experimental data the corresponding
transillumination contrast scan, C{x, Af).

First, in the framework of the random-walk model
one can express the undistorted intensity I (x, Af)
expected at the detector point x laterally shifted rel-
ative to the source as'®

¢ p.\z(X)
Iy (x, At) = I(0, Ag) =255
0 X ) ol )ZA,(O)

= 1300, At)exp(—3p,'x*/4eAt), (B1)

where I(0, A¢) is the time-dependent intensity ob-
tained in straight-through transmission (the distance
between the detector and the source equals the dis-
tance across the slab) and where the ratio p,,(x)/
P(0) is derived from p, (x)/p,(0) = exp(—3x%/4An)
and An = p."cAL.

Similarly, if x,, is the position of the detector asso-
ciated with the experimental, unperturbed path-
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length distribution Ii/” (x,, At) taken as a referen .
then the unperturbed path-length distribution to be
expected at the detector shift x is determined by the
ratio of corresponding probabilities:

. _ (x

1 (%, A8) = Iz, A0y 22
Palxg)

3”5'(7172 - -\-uz)

= I (x,, At)exp| — :
oo g deAt

} . (B2)
Hence, using a derivation similar to that given in Ref.
15, one finds that, as a first approximation, in the fan
geometry the distortion of the path lengths that is
due to a small inclusion can be represented by the
following expression:

SI'M(x, AL) L I'(x, At) W's, x), -
e e ] = e e , (B3)

I (x, A I '(x, Ab) e pa(x)

where v is the effective absorptivity of the small
inclusion considered. The corresponding intensity
distortion expected in the case when the source is
positioned over the target is

3'(x, A¢) W's, x),,
C»,-(x, Al) = Wy = Mty
V(AL P00
W'/(s, x),
== [\’/'T]l.“‘ ¥ (B4)
paulx)
where
Ws, x) (x)
B = P (B5)

W ys, X)A,/)A,(O)’

Thus, from Eqgs. (B2) and (B3) we finally have Eq.
(10):

I' ', A LY (x,, AD
L (xe, AD) 1Yk, A
B I7(x, At) pylxy)
- [ L (x, Af) paylx)

Cylx, At) = K,—[l

y W(s, x)y, palx)
) VV‘“(S, X)y, pa(0) )
The authors thank Simon Arridge for helpful dis-

cussions and for providing his inverse program for
the calculation of its diffusion kernel.
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